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1. INTRODUCTION
In this note we present an algorithm to determine the sum
n
Saln) = Z(—l)UaJ, « irrational,

j=1

where, as usual, || denotes the greatest integer < z. Our algorithm is sitnple
and fast; it consists of two simple operations, and the number of operations
needed to evaluate S,(n) is of order log(n).

The sum S, (n) has been studied before in [1], where it was shown that S (n)

is unbounded for irrational «, and that on the other hand the equality S, (n) =
o holds for infinitely many n. So this sum has some of the characteristics of a
random walk.
" However, this random-like sum incorporates some remarkable symmetry prop-
erties. For instance, if you calculate S ;(n) for increasing n, and keep track
of those n for which S ;(n) attains a value for the first time, then a recur-
rence relation between the n is displayed. More specifically, S ; (o) = o is the
first new value. The next new value occurs at n = 1, for which S \/3(1) = —1,
and then S ;(3) = 1, S /;(8) = —2, etc. The first few extremes occur at
0,1,3,8,20,49,119,288,... In [4] it was conjectured that these numbers satisfy
the recurrence relation n;4, = 2n; +n;_, + 1. At the end of this paper we will
see that this is the case indeed.

In order to compute S, (n) efficiently, we looked for patterns in the plus and
minus signs of the terms ( —1)Uel We observed two kinds of patterns: ‘repe-
titions’ and ‘reflections’. Both patterns induce an operation in the algorithm.

- A repetition occurs for a number 7 if (—1)7*! is equal to (—1) Lintilel for
all 1 < j < n. This implies that So(n+k)=Sa(n)+Salk)for1 < k < n,
which is one of the operations in the algorithm.

- A reflection occurs for a number n if (—1)lel and (—1)ln=dle) have
opposite signs for all 1 < j < n/2. This implies that Sa(n — 1) =
Sp(n — k) — Salk —1) for L < k < n/2, whichis the other operation.
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For which n does a repetition or a reflection take place? Assume that, for some
n, no is very close to an even integer 2m. Then (n + j)a = 2m + jo and
(n — j)a = 2m — ja, which makes it plausible that

(_l)[(n+j)aj — (_l)Lzm+ja_| — (_1)zm+LjaJ —_ (_—l)l_jozj7

(_l)l_(n—j)o:j — (_l)Lzm—jaJ — (_l)zm-—LjaJ—l —_ —(~l)UO‘J.

Apparently, repetitions and reflections are likely to occur if na = 2m, or, in
other words, if a rational m/n is a very good approximation of ¢/ 2.

The best rational approximations of «/2 are the so-called convergents of
the continued fraction of /2. The next section contains a brief review of
continued fractions. Since S,+,(n) is equal to S,(n), we may restrict ourselves
to —1 < a < 1. Furthermore, S_,(n) = —S,(n) if « is irrational, so we may
even assume that 0 < @ < 1. Hence, we only consider continued fractions of
irrationals between 0 and 1/2.

2. CONTINUED FRACTIONS

Every irrational 3, with 0 < 8 < 1/2, can be represented as an infinite contin-
ued fraction

1 ,
8 = ny € Zsy, n; € Zso fori> 2,

n, +
n, +
1

n3+—'_'_

1

which is denoted by [o;n,,n,,n;,...]. The truncation r; = [0;n,,7m,,...,n] is
called the ith convergent of 3. The r; are rational numbers, and their numera-
tors and denominators can be constructed from simple recurrence relations. If
we define

P-1 =1 Po=0 Ditz = Nit2Pi+y +Di
g-1 = Go = 1 Qit2 = Mit2Gi+1 + G5
then r; = p;/¢;. By induction one can prove the equality
PiGits — Pital = (—1)' 7%,

which implies that p; and ¢; are relatively prime. Moreover, the recurrence
relation for the denominators ¢; implies that ¢; < ¢;4, for i > o.
The following classical result indicates that convergents of 8 provide good

rational approximations of 5 with relatively small denominators. For a proof
see [3, page 58].

PROPOSITION 1. If a rational m/n lies between 3 and one of its convergents
Ti =Ppi/q, then n > qiy, +gi-

Proposition 1 will be an important ingredient of the proofs for the equations
that constitute the algorithm.
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3. THE ALGORITHM

Consider an irrational o, with 0 < o < 1. Let ¢,,¢1,¢;,... be the successive
denominators of the convergents of a/2. The following equation is based on
repetitions.

EQUATION 1

Salmg; +1) =mSa(qi) + Sall), ¢ <mg+1< g’?i’iz-tﬂ, o<l < g

PrOOF. It is sufficient to prove that

(—u)tkatilel — (—plied g < kg 45 < q—’ﬂ;—ﬂ, 0<j<q
Suppose that this equation does not hold for some k and j. Then we have to
prove that kg; + j is greater than or equal to (g;+, + ¢;)/2. Let kg; +; be the
smallest number for which the repetitive pattern breaks down. In this case the
equation still holds for (kK — 1)g; + j, and we conclude that

(—p)WE=Dgtilel £ (_y)llkatila)

We rewrite this inequality. Since p;/q; is a convergent of a/2, the difference
between «/2 and p;/g; is small. Puttinge = o/2—p;/¢;, we get ((k—1)g;+j)a =
(kgi + j)o — 2q;€ — 2p;. Since 2p; is even, it follows that

(—p)tkgitila—2gie] o (_y)Llkaitila]

Hence, there must be an integer m between (kg; + j)a — 2q;¢ and (kg; + 7)a.
This implies that m/2(kg; +j) lies between a/2—€ = p;/¢; and «/2. According
to Proposition 1 we then have 2(kq; + j) > g;+1 + ¢;, which is what we wanted
to prove. O

Equation 1 reduces the effort to compute S,(n) considerably. If one knows
Sa(n) for n < g;_,, then by Equation 1 S,(n) is known for n < (g; + ¢;—1)/2.
However, Equation 1 by itself does not yet constitute a fast algorithm for
calculating the S,(n). For this purpose it should produce, from the values
Sa(n) for n < g;_,, the values for n < g;.

The following equation nearly closes the gap between (g; + gi—,)/2 and g;.
Equation 2 relates S, (n) to Su(g; —n — 1) for ¢;/2 < n < g;. The equation is
based on reflections.

EQUATION 2

Sa(Qi—k):Sa(k"l)"}'sa(%—l)a 1

INA

£

IN
NN

PrOOF. First we show that
(~0)bed = (—0)¥

2p,; .
o for1§j<qiandj#g;—.

Here, the argument is similar to that for Equation 1. Suppose that the equation
is not true for some particular j:



16 R. Fokkink, W. Fokkink & J. van de Lune

(~1)bed £ (—n)V e

Since both ja and j2p;/g; are non-integral (because j # ¢;/2 and j # ¢;), there
must be an integer m in between. In other words, m/2j lies between a/2 and
pi/qi. Proposition 1 then tells us that 2j > ¢+, + ¢ > 2¢;, and we have a
contradiction.

Now we can prove Equation 2. Since (g; — j)2pi/qi = 2pi — j2pi/qi, we have

(—pte= gt = ()Y for1<j< %

b

By the equality that has just been deduced, we may replace 2p;/g; by o

(_l)L(Qi—j)O‘J - .._[_l)UO‘J’ for 1 S _7 < gzz;,

which immediately implies Equation 2. (]

The algorithm is nearly complete. We already know the operations to reduce
the n in S, (n), but in order to compute S, (n) we still need to know its values
at the denominators ¢; and ¢; — 1. The values S, (¢;) can be obtained efficiently
from the reflection principle.

EqQuATIiON 3

(—1)! if ¢; is odd,
Salgs) =0 if g; is even.

Proor. In the proof of Equation 2, it was shown that
(—1)llai=dlad — _(_pylie] for1<j< %
(This equality says that almost all terms of S,(g;) cancel.)

First, assume that ¢; is odd. Then it follows that S, (g;) = (—1)%%). If we
put € = /2 — p;/q;, then goe = 2p; + 2¢;e. We will show that 2¢;e| < 1.

Suppose that jle| > 1 for some j. Then there lies an integer m between jo /2
and jo/2 — je. So m/j lies between a/2 and a/2 — € = p;/q;. According to
Proposition 1 we then have j > ¢;+, + ¢; > 2¢;. Thus 2¢;|e| < 1.

Hence, |g;a| = 2p; is even if € > o0, and |g;o) = 2p; — 1 is odd if € < 0. If
i is even, then the convergent p;/q; approximates /2 from below, so in that
case € > 0. If 1 is odd, then p;/¢; approximates /2 from above, so that ¢ < o.
This proves that S, (g;) = (—1)%.

Next, assume that ¢; is even. Then S,(g;) = (—1)l%2/2] 4 (—1)lael We
claim that these remaining two terms have opposite signs. As above, we have
gio/2 =p; + gie/2 and gio = 2p; + gi€. The numerator p; is odd, because ¢; is
even. It follows for € > o (i.e., for even i) that |g;a/2] and |g;) are odd and

even respectively. Similarly, if € < o (i.e., if 4 is odd), then they are even and
odd respectively. So S, (g;) = o. O

' To complete the algorithm, we calculate Salgs —1), in order to reduce Equa-
tion 2 to a more suitable form. We have Salgi—1) = So(q;) — (—1) el Using
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equalities that have been deduced in the proof of Equation 3, we obtain that
Salg; —1) =0 if ¢; is odd and So(g; — 1) = (—1)l%2/2] = (—1)5~1 if ¢, is even.
Hence, the following equation is equivalent to Equation 2.

Equarion 2’

For 1 < k < g;/2 we have
Salgi — k) = Salk —1) . if g; is odd,
Sal@i — k) = Salk — 1) + (1) if g; is even.

Combining Equations 1, 2’ and 3, we obtain the promised fast algorithm for
Sa(n).

4. AN EXAMPLE
We demonstrate the use of the algorithm by calculating Se(1, 000, 000). Since
0 < e—2< 1, we replace e by e — 2. The continued fraction of (e — 2)/2 is

[0;2,1,3,1,1,1,3,3,3,1,3,1,3,5,3,1,5, -],
so that the denominators of the first convergents are

1, 2, 3, 11, 14, 25, 39, 142, 465, 1537, 2002, 7543,
9545, 36178, 190435, 607483, 797918, 4597073.

This is all we need to know in order to apply the algorithm to Se(1, 000, 000).
From Equations 1 and 3 it follows that

Se(1,000,000) = S.(797,018) + Sc(202,082) = Se(202,082)
Se(202,082) = 85.(190,435) + S.(11,647) = 1 + S.(11,647)
Se(11,647) = 5.(9,545) 4+ Se(z,102) = 1 + S(2,102)
Se(2,102) = S.(2,002) + Se(100) = Se(100).

According to Equation 2/, reflection with respect to 142 yields
8e(100) = S.(41) + 1 = 85.(39) + Se(2) + 1= 2.

Since we picked up four ones on the way, we find S.(1,000,000) = 4.

5. A RECURRENCE RELATION
Using the results from Section 3, we can prove the conjecture from [4], saying
that the numbers n where S 5;(n) attains a new value satisfy the recurrence
relation n;, = 2n; + Ny + 1.

Since 0 < 2 — /2 < 1, we replace /2 by 2 — /2. The continued fraction
of (2 —v/2)/2 is [0;3,2,2,2,...], so that the denominators gs,¢:,4, ... of the
convergents are found by the recurrence relation g;4+, = 2¢; + ¢;—, with g, =1
and ¢, = 3. This implies that all ¢; are odd, so according to Equation 3 we
have So(g;) = (—1)*. Then Equations 2" and 1 yield

Solqivr —k) = Salk—1), k< qiya/2,

Salq +1) = (=1)' + S.(0), g +1<qit./2
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The first equation implies that extremes do not occur Petween Gi+1/2 and
i+ the value of S, at g4, — k has already been attained at & — 1. The
second equation implies that, if j; and k; denote the numbers where the ith
new minimum and maximum of S, are attained, then we have the recurrence

relations
ji = fai-a + j‘i—la jo =0,
ki = qu + kioy, ko =o.

Hence, j, = qui oy + @3+ +q and ki = @i + Goier +- - + @, from which it
is clear that each new minimum is followed by a new maximum and vice versa.
It is now straightforward to check that the recurrence relation for the n; (with
-y = j; and ny,; = k;) reads n;yy, = 2m; + 1y, + 1. |

In fact, along the same lines we can deduce a similar result for all quadratic
irrationals a, because these are exactly the irrationals that have a periodic

continued fraction (see e.g. [2]).
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